The adrenergic antagonists (also called blockers or sympatholytic agents) bind to adrenoceptors but do not trigger the usual receptor-mediated intracellular effects. These drugs act by either reversibly or irreversibly attaching to the receptor, thus preventing its activation by endogenous catecholamines. Like the agonists, the adrenergic antagonists are classified according to their relative affinities for α or β receptors in the peripheral nervous system. [Note: Antagonists that block dopamine receptors are most important in the central nervous system (CNS) and are therefore considered in that section ).]
The receptor-blocking drugs discussed in this chapter are summarized in Figure above
- α-Adrenergic Blocking Agents
Drugs that block α-adrenoceptors profoundly affect blood pressure. Because normal sympathetic control of the vasculature occurs in large part through agonist actions on α-adrenergic receptors, blockade of these receptors reduces the sympathetic tone of the blood vessels, resulting in decreased peripheral vascular resistance. This induces a reflex tachycardia resulting from the lowered blood pressure. [Note: β receptors, including β1-adrenoceptors on the heart, are not affected by α blockade.] The α-adrenergic blocking agents, phenoxybenzamine and phentolamine, have limited clinical applications.
D. Yohimbine
All the clinically available β-blockers are competitive antagonists. Nonselective β-blockers act at both β1 and β2 receptors, whereas cardioselective β antagonists primarily block β1 receptors [Note: There are no clinically useful β2 antagonists]. These drugs also differ in intrinsic sympathomimetic activity, in CNS effects, and in pharmacokinetics
Figure : Elimination half- lives for some α- blockers.
Although all β-blockers lower blood pressure in hypertension, they do not induce postural hypotension, because the α-adrenoceptors remain functional. Therefore, normal sympathetic control of the vasculature is maintained. β-Blockers are also effective in treating angina, cardiac arrhythmias, myocardial infarction, congestive heart failure, hyperthyroidism, and glaucoma, as well as serving in the prophylaxis of migraine headaches. [Note: The names of all β-blockers end in “-olol” except for labetalol and carvedilol
- β-Adrenergic Blocking Agents
All the clinically available β-blockers are competitive antagonists. Nonselective β-blockers act at both β1 and β2 receptors, whereas cardioselective β antagonists primarily block β1 receptors [Note: There are no clinically useful β2 antagonists]. These drugs also differ in intrinsic sympathomimetic activity, in CNS effects, and in pharmacokinetics
Figure : Elimination half- lives for some α- blockers.
Although all β-blockers lower blood pressure in hypertension, they do not induce postural hypotension, because the α-adrenoceptors remain functional. Therefore, normal sympathetic control of the vasculature is maintained. β-Blockers are also effective in treating angina, cardiac arrhythmias, myocardial infarction, congestive heart failure, hyperthyroidism, and glaucoma, as well as serving in the prophylaxis of migraine headaches. [Note: The names of all β-blockers end in “-olol” except for labetalol and carvedilol
B. Timolol and nadolol: Nonselective β antagonists Timolol [TIM-o-lole] and nadolol [NAH-doh-lole] also block β1- and β2- adrenoceptors and are more potent than propranolol. Nadolol has a very long duration of action . Timolol reduces the production of aqueous humor in the eye. It is used topically in the treatment of chronic open-angle glaucoma and, occasionally, for systemic treatment of hypertension.
C. Acebutolol, atenolol, metoprolol, and esmolol:
C. Acebutolol, atenolol, metoprolol, and esmolol:
D. Pindolol and acebutolol:
E. Labetalol and carvedilol: Antagonists of both α- and β- adrenoceptors
E. Labetalol and carvedilol: Antagonists of both α- and β- adrenoceptors
- Drugs Affecting Neurotransmitter
A. Reserpine
Reserpine [re-SER-peen], a plant alkaloid, blocks the Mg2+/adenosine triphosphate–dependent transport of biogenic amines, norepinephrine, dopamine, and serotonin from the cytoplasm into storage vesicles in the adrenergic nerves of all body tissues. This causes the ultimate depletion of biogenic amines. Sympathetic function, in general, is impaired because of decreased release of norepinephrine. The drug has a slow onset, a long duration of action, and effects that persist for many days after discontinuation.
B. Guanethidine
Guanethidine [gwahn-ETH-i-deen] blocks the release of stored norepinephrine as well as displaces norepinephrine from storage vesicles (thus producing a transient increase in blood pressure). This leads to gradual depletion of norepinephrine in nerve endings except for those in the CNS. Guanethidine commonly causes orthostatic hypotension and interferes with male sexual function. Supersensitivity to norepinephrine due to depletion of the amine can result in hypertensive crisis in patients with pheochromocytoma.
C. Cocaine
Although cocaine inhibits norepinephrine uptake, it is an adrenergic agonist.
back to drug affecting on ANS
Haloo pak^^
ReplyDeleteKami dari SENTANAPOKER ingin menawarkan pak^^
Untuk saat ini kami menerima Deposit Melalui Pulsa ya pak.
*untuk minimal deposit 10ribu
*untuk minimal Withdraw 25ribu
*untuk deposit pulsa kami menerima provider
-XL
-Telkomsel
untuk bonus yang kami miliki kami memiliki
*bonus cashback 0,5%
*bunus refferal 20%
*bonus gebiar bulanan (N-max,samsung Note 10+,Iphone xr 64G,camera go pro 7hero,Apple airpods 2 ,dan freechips)
Daftar Langsung Di:
SENTANAPOKER
Kontak Kami;
WA : +855 9647 76509
Line : SentanaPoker
Wechat : SentanaPokerLivechat Sentanapoker
Proses deposit dan withdraw tercepat bisa anda rasakan jika bermain di Sentanapoker. So… ? tunggu apa lagi ? Mari bergabung dengan kami. Pelayanan CS yang ramah dan Proffesional dan pastinya sangat aman juga bisa anda dapatkan di Sentanapoker.
Thanks for sharing this info! Picmonic has been a life savior for remembering adrenergics too. This playlist is a must-save: https://www.picmonic.com/share/track/adrenergics_264?ref=W6ZEW9O53ADZLG420
ReplyDelete